全解Python的地理编码 译文 精选

  • A+
所属分类:轻松一刻
摘要

译者 | 崔皓审校 | 孙淑娟 大家在处理机器学习的大型数据集时,是否会遇到如下的地址栏?

译者 | 崔皓

审校 | 孙淑娟

1、简介

 大家在处理机器学习的大型数据集时,是否会遇到如下的地址栏?

全解Python的地理编码 译文 精选

上面的位置数据非常混乱,难以处理。对地址进行编码是很困难的,因为它们具有非常高基数。如果你试图用单次编码技术来对某列进行编码,就会导致高维度的结果,这会导致机器学习模型表现欠佳。解决问题的最简单方法就是对列进行地理编码。

2、什么是地理编码?

地理编码是将地址转换为地理坐标,这意味着将把原始地址转化为经度/纬度的方式。

3、Python中的地理编码

有许多不同的库可以帮助你用Python进行地理编码。最快的是谷歌地图提供的API,如果有超过1000个地址需要在短时间内转换,我推荐你使用。然而,谷歌地图的API并不是免费的,你需要为每1000个请求支付约5美元。

谷歌地图API的免费替代品是OpenStreetMap API。然而,OpenStreetMap API的速度比起谷歌地图来说要慢得多,而且准确性也稍差。

在这篇文章中,我将指导你使用上述两个API完成地理编码过程。

4、谷歌地图API

让我们首先使用谷歌地图API将地址转换成精度/纬度。首先需要创建一个谷歌云账户,并输入信用卡信息。虽然这是一项付费服务,但当你第一次创建谷歌云账户时,谷歌会给你200美元的免费信用。这意味着,在你被收费之前,你可以用他们的地理编码API进行大约40,000次调用。只要你没有达到这个限制,你的账户就不会被收费。

首先,在谷歌云上建立一个免费账户。然后,一旦你建立了一个账户,你就可以按照这个教程来获得你的谷歌地图API密钥。

一旦你收到API密钥,就可以开始编码了!

(1)前提条件

在本教程中使用Zomato餐厅Kaggle数据集。确保在你的路径中安装了该数据集。然后,用这个命令安装googlemaps API包。

pip install -U googlemaps

(2)读取数据集

现在,让我们读取数据集并检查数据帧的头部。

data = pd. read_csv('zomato.csv',encoding="ISO-8859-1")
df = data.copy()
df.head()

全解Python的地理编码 译文 精选

这个数据集合有21列,9551行。

只需要针对地址列来进行地理编码,所以去掉所有其他的列。然后,再去掉重复记录,最后只得到地址列信息。

df = df[['地址']]
df = df. drop_duplicates()

再看一下数据框架的头部,在处理之后就只看到地址信息了。

全解Python的地理编码 译文 精选

接下来,就可以开始地理编码了。

(3)地理编码

首先,用Python访问我们的API密钥,运行下面几行代码来完成这个任务。

gmaps_key = googlemaps.Client(key="your_API_key")

现在,让我们先尝试对一个地址进行地理编码,并看看输出结果。

add_1 = df['地址'][0]
g = gmaps_key. geocode(add_1)
lat = g[0]["geometry"]["location"]["lat"]
long = g[0]["geometry"]["location"]["lng"]
print('Latitude: '+str(lat)+', Longitude: '+str(long))

运行上述代码,得到类似如下的输出结果。

 

全解Python的地理编码 译文 精选

如果你得到上述输出,很好!表示一切顺利。我们可以针对整个数据集应用类似的处理,过程如下:

def geocode(add):
g = gmaps_key. geocode(add)
lat = g[0]["geometry"]["location"]["lat"]
lng = g[0]["geometry"]["location"]["lng"]
return(lat, lng)。
df['geocoded'] = df['Address']. apply(geocode)

再次检查数据集合的头部,看看代码是否生效。

df.head()

全解Python的地理编码 译文 精选

如果输出类似上面的截图,恭喜你!你已经成功地对整个数据框架中的地址进行了地理编码。

5、OpenStreetMap API

OpenStreetMap API是完全免费的,但与谷歌地图API相比,速度较慢,精确度较低。这个API无法定位数据集中的许多地址,所以这次我们将使用地点栏来代替。在开始学习教程之前,让我们先看看地址栏和位置栏的区别。运行下面几行代码来完成这个任务。

print('Address: '+data['Address'][0]+'/n/nLocality: '+data['Locality'][0] )

全解Python的地理编码 译文 精选

地址栏(Address)比地点(Locality)栏细化得多,它提供了餐厅的确切位置,包括楼层号。这可能是地址不被OpenStreetMap API识别,而地点却被识别的原因。

让我们对第一个Locality进行地理编码,看看输出结果。

地理编码

运行以下几行代码。

Import url
Import requests

data = data[['Locality']]

url = 'https://nominatim.openstreetmap.org/search/' + urllib. parse. quote(df['Locality'][0]) +'?format=json' 。
response = requests.get(url).json()
print('Latitude: '+response[0]['lat']+', Longitude: '+response[0]['lon'] )

左右滑动查看完整代码

上述代码的输出与谷歌地图API生成的结果非常相似。

全解Python的地理编码 译文 精选

现在,让我们创建一个函数来寻找整个数据集合的坐标。

def geocode2(locality):
url = 'https://nominatim.openstreetmap.org/search/' + urllib. parse. quote(locality) +'?format=json'
response = requests.get(url).json()
if (len(response)!=0)。
return(response[0]['lat'], response[0]['lon'] )
else:
return('-1')

data['geocoded'] = data['Locality']. apply(geocode2)

很好!现在,让我们来看看数据集合的头部。

Data.head(15)

请注意,这个API无法为数据集合中的一些地方提供坐标。

虽然它是谷歌地图API的免费替代品,如果用OpenStreetMap进行地理编码,有可能会失去大量的数据。本教程到此结束!希望你从这里学到了一些新的东西,并对处理地理空间数据有了更好的理解。

原文链接:https://www.kdnuggets.com/2022/11/geocoding-python-complete-guide.html

译者介绍

崔皓,51CTO社区编辑,资深架构师,拥有18年的软件开发和架构经验,10年分布式架构经验。

  • 我的微信公众号
  • 扫一扫关注
  • weinxin
  • 我的新浪微博号
  • 扫一扫关注
  • weinxin
小辉博客

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: