- A+
杂质半导体,半导体四大特征?
半导体的四大特征:一、电阻随温度上升而下降。二、光生伏特效应。三、光导电效应。四、整流效应。
1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但法拉第发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。
不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。
1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体的第三种特征。
在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第四种特征。同年,舒斯特又发现了铜与氧化铜的整流效应。
半导体的这四个特性,虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。
为什么绝缘体才能做成半导体?
不善于传导电流的物质称为绝缘体,绝缘体又称为电介质.它们的电阻率极高.
绝缘体的种类很多,固体的如塑料、橡胶、玻璃,陶瓷等;液体的如各种天然矿物油、硅油、三氯联苯等;气体的如空气、二氧化碳、六氟化硫等.
绝缘体在某些外界条件,如加热、加高压等影响下,会被“击穿”,而转化为导体.在未被击穿之前,绝缘体也不是绝对不导电的物体.如果在绝缘材料两端施加电压,材料中将会出现微弱的电流.
绝缘材料中通常只有微量的自由电子,在未被击穿前参加导电的带电粒子主要是由热运动而离解出来的本征离子和杂质粒子.绝缘体的电学性质反映在电导、极化、损耗和击穿等过程中.
导体和绝缘体没有绝对的区分
通常根据生活经验
一般几十万欧姆的认为是绝缘体
几万以下的是导体
半导体介于二者间
受主杂质和施主杂质什么区别?
半导体物理中的杂质指的是半导体内部的除半导体本身原子意外的其他原子。
所谓施主受主,指的是半导体内部杂质原子的核外电子最外层电子数多于4还是少于4。
因为原子核最外层电子数目为4时最稳定。
如果最外层电子数少于4个,那么它容易吸引一个自由电子进入最外层绕核旋转,形成饱和状态;相反最外层电子数目大于4个,则越容易失去电子。
举个例子,半导体内部如果有杂质原子最外层电子数少于4,比如3个,那么它核内正电子容易吸引外界的一个电子进入最外电子层,形成饱和状态,这个杂质原子因为得到电子被叫做受主;反之最外层有5个电子,则杂质原子容易失去一个电子成为自由电子,这个杂质原子叫施主。
不知道你明白了没有。
为什么金属中加入杂质电阻率增大?
在金属中掺入杂质,会使电阻率增大;而在本征半导体中掺入杂质,会使电阻率减小。这是因为杂质对于金属而言属于化学缺陷,杂质的引入会加大电子在杂质与缺陷上的散射程度,因而引起电阻率的增大。)而对于本征半导体而言,掺杂都会使得载流子浓度急剧增加,载流子浓度增大远远超过了杂质引入导致的散射增强,因而总体效果是电阻率减小。
一般来讲,金属的电阻率是比较低的,也就是讲金属的导电性是良好的,掺入杂质后会影响金属的导电性,所以电阻率会变大。
半导体器件考研难度?
难。
其实最重要的是量子力学,固体物理和半导体物理的基础就是它,其他的无非是各种推导,虽然困难,但应该看得懂,建议选固体物理。因为半导体物理是在固体物理基础上讲的。要想把半导体物理学好,你固体物理也得过关。
半导体物理是研究半导体原子状态和电子状态以及各种半导体器件内部电子过程的学科。是固体物理学的一个分支。研究半导体中的原子状态是以晶体结构学和点阵动力学为基础,主要研究半导体的晶体结构、晶体生长,以及晶体中的杂质和各种类型的缺陷。
- 我的微信公众号
- 扫一扫关注
- 我的新浪微博号
- 扫一扫关注